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Field theory of self-organized fractal etching
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We propose a phenomenological field theoretical approach to the chemical etching of a disordered solid. The
theory is based on a recently proposed dynamical etching model. Through the introduction of a set of Langevin
equations for the model evolution, we are able to map the problem into a field theory related to isotropic
percolation. To the best of the author's knowledge, this constitutes the first application of field theory to a
problem of chemical dynamics. By using this mapping, many of the etching process critical properties are seen
to be describable in terms of the percolation renormalization group fixed point. The emerging field theory has
the peculiarity of beingelf-organizedn the sense that without any parameter fine tuning the system develops
fractal properties up to a certain scale controlled solely by the voMmo&the etching solution. In the limit
V—o the upper cutoff goes to infinity and the system becomes scale invariant. We present also a finite size
scaling analysis and discuss the relation of this particular etching mechanism to gradient percolation. Finally,
the possibility of considering this mechanism as a generic path to self-organized criticality is analyzed, with the
characteristics of being closely related to a real physical system and therefore more directly accessible to
experiments.
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I. INTRODUCTION The purpose of this paper is to provide further theoretical
evidence that indeed the critical behavior of the model dy-
Corrosion of solids is an everyday phenomenon of evidennamics is related to isotropic percolation. We also extend the
practical importancél]. The recent development of theoret- previous relation to spatial dimensions larger tiign2. To
ical tools for the study of disordered systems and fractals ifthis end, we shall first reviewSec. 1) two known percola-
the context of statistical mechanif8—5] has triggered an tion models that will be useful in the forthcoming discussion:
outburst of activity in this subject. (i) dynamical percolation angi) gradient percolatiofiGP).
When an etching solution is put in contact with a disor- Afterward(Sec. 1)), we will define the dynamical etching
dered etchable solid, the solution corrodes the weak parts ¢hodel[8,9] in a circular (spherical geometry and derive a
the solid surface, while the hard, stronger parts stay uncoi?henomenological field theory for itSec. IV). From the
roded. During this process new regions of the solid, botranalysis of this field theory the parallelism with percolation
hard and weak, are uncovered and come into contact with th&ill be set up in a rather clear way, and this will provide
etching solution. As corrosion proceeds the etching power ofurther theoretical evidence of the connection between etch-
the solution may diminish: indeed, if the etchant is consumedng and percolation phenomena.
in the reaction, etching becomes more and more unlikely The approach presented in this paper will allow us to
until, finally, the solution is so impoverished and the solidstudy the system’self-organizationfrom a field theoretical
surface so hardened that the corrosion process is arrested. p@int of view, and to verify that, in a certain limit, the system
that moment all solid points in contact with the solution areis self-driven to the neighborhood of a critical point without
too hard to be etched by the weakened etching solution. Onfeeed of any parameter fine tuning. This path to self-
of the most interesting aspects of this type of phenomenon igrganized Crltlcallt}{lo] will be discussed in the last section.
that the final solid-liquid interface has, in general, a fractal

geometry, at I(_aas_t up to a certain scfide-6). Thi_s is pre- Il. TWO PERCOLATION MODELS
cisely the qualitative phenomenology observed in a nice ex-
periment on pit corrosion of aluminum thin filnZ]. In this section we review two different well-known per-

Recently, a simple dynamical model of etching, capturingcolation models that will be useful in the discussion of the
the aforementioned phenomenology, has been proposexiching processes under consideration.
[8,9]. This model has been studied using both computational
and analytical tools 9], and from these studies strong
evidence has been provided that the fractal properties of the
solid surface, once the dynamics has stopped, are related to Dynamical percolation is a model proposed for the study
isotropic percolation. In principle, this is not an obvious re-of the propagation of epidemics in a population, and/or for
sult; in fact, at first sight, one could think that the interfacethe analysis of forest fires. It is defined as follofi®,13).
should be anisotropic as there is a preferential direction id_et us consider a regular square lattice; at each site there is a
which the solution advances by etching the solid. variable that can be in one of three possible statas bor-

A. Dynamical percolation
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row the language from epidemiolo¥4]): (i) infected sites, p(X)= 1080.60.40.2 0
(i) healthy sites susceptible to being infected, &iiid im-
mune sites(nonsusceptible to being reinfecjedit time t L
=0 a localized seed of infected sites is located at the center
of an otherwise emptyhealthy lattice. The dynamics pro-
ceeds in discrete time steps either by parallel or by sequential
updating as follows: at each time step every infected site can *
infect a(healthy randomly chosen neighbor with probability
p or, alternatively, heal and become immune to reinfection y
with complementary probability 2 p. Any system state with
no infected site is aabsorbing configurationi.e., a configu-
ration in which the system can get trapped and from which it
cannot escapgl5,16]. It is clear that depending on the value
of p the epidemics generated by the initial infection seed will
either spread in the latticgor large values op) or die out 0 h
(for small values op). In all cases, the epidemics will leave X
behind a cluster othealed immune sites, infinite or finite,
respectively, for the two aforementioned cases. Separating FIG. 1. Schematic representation of the gradient percolation
the two previous phases, there is a critical valueppf0  model. In this case, =8 andh=>5. Gray(white) rectangles repre-
<p.<1, at which the epidemics propagates marginally,sent occupiedempty sites. In darker gray we indicate the surface
leaving behind a fractal cluster of immunized sites. It can beof the connected cluster of occupied sites. This surface has fractal
shown using field theoretical toolsee below that this is a  dimensionD;=7/4 up to the characteristic thickness-Vp~*".
percolation clustef12,13. In this way we have a dynamical
model that at criticality reproduces tlistatio properties of  sizesL andh, respectively, as shown in Fig. 1. An occupa-
standard percolation. Needless to say, the dynamical propetion probability given byp(x) =1—x/h is assigned to sites
ties of the dynamical percolation equation do not corresponéh columnx; this defines a transverse constant gradiept
to any known property of static percolation. =1/h for the occupation probability. Then, at each lattice
The dynamical percolation model can be cast into the folsite (x,y) a random number(x,y) €[0,1], extracted from a
lowing Langevin equatiorf12,13 (or equivalently into a homogeneous distribution, and representing the site’s resis-
field theory[17,18)): tance to occupation, is assigned. All sites witlx,y)
<p(x) are declared occupied, while the remainder are
empty. In the first colummnx=0, all sites are occupied, while
there is zero occupancy in the last omes h (see Fig. L
After identifying all sites as occupied or empty, one detects
+Vp(Xt) n(X,t), (1) two connected region&lusters: one (leftmosh with a ma-
o . jority of occupied sites possibly surrounding “lakes” of
where p (the “mass” in field theoretical languagend « Jemgty sites, aﬁd another E))mghtr)rqos) a sea ofgempty sites

>0 are co_nstants,,)(x,t) an a_ctivity_ field des_cribing at a possibly surrounding islands of occupied sites. Separating
coarse grained level the density of infected sites, 80dt)  hese two regions there is an interfathe frontier of the

a (_Saussian white nois_e. Note the muItipIicativ_e nature of the.onnected cluster of occupied sites; it corresponds to the
noise, because of which the staigx,t)=0 defines an ab- ga1 sites in Fig. L The average position of this interface
sorbing state, i.e.dip(x,t)=0. Note also the presence of a can pe shown to be at the square lattice site percolation
non-Markoylan term, which constitutes the key d'ﬁerencethresholdpc [20,21. In fact, gradient percolation has been
between this equation and the Reggeon field theory, charageq as a computational tool to obtain accurate values of
teristic of many other systems with absorbing states. Thige(coation thresholds in different geometries by identifying
non-Markovian term stems from the existence of iInmunizedye ayerage position of the interface in sufficiently large lat-
sites, of which the system keeps an indelible memoryices20]. In the case that we are considering, the fractal
[12,13. ' , L _dimension of the interfacd);=7/4, can be identified as the
The field theoretical a_nd renqrmallzatlon group _a_naly5|snu” fractal dimension of the critical percolating cluster in a
of Eq. (1) can be found in the literaturgl3]. The critical  4_gimensional lattic§21]. There is an upper cutoff up to
dimension isd.=6, and the exponents, calculated in &n \hich this fractal behavior is observed; it is fixed by the
expansion, coincide with the well-known values for percola-ijin which, in its turn, is determined by, and therefore

tion calculated using other techniquel®]. Apart from the g "1t can be shown using percolation theory that
static exponents, a dynamical exponean also be derived

from this analysis of dynamical percolati¢h3]. o~Vp % 2)

t
Ip(X,t) = mp(X,t) — ap(Xt) J'Odt’p(x,t’) +V2p(x,1)

B. Gradient percolation where a,=1/D; [9,20,23. In order to have a well-defined

Gradient percolatiop20] is defined in the following way. percolation system, with negligible finite size effects, the
Let us consider a bidimensional rectangular lattice of lateralimit L> ¢ has to be used. In this way, the lendthdeter-
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1] Toa] Fua| Taa| Fas £y] Tia| Fual Taa| Tus (ii) A random qu_enched_numbare [0,1] (extraqted from
a uniform distribution, assigned to each solid siterepre-
Te |T7 | Tsg| Ty | Tyo =1 Ts | T7 | Ts | To | Tuo sents the site resistance to etching.
r,|\r, |||, 0 r, r, (iii ) The etching solution occupies a fixed voluviand is
T <pO) initially in contact with the solid through the bottom bound-
V N, (0) 5 <p0) V . N1 ary, as depicted in Fig. 2, defining a solid-solution interface
r; <p(0) advancing on average in the upward direction.
p(0)=M) N (1) =Ng(0)-3 p(1)=M The solution contains an initial numbét,(0) of dis-
\Y ¢ « \ solved etchant molecules. Its concentration at timés
L C(t) =Ng(t)/V. It is assumed that the etching power of the

solutionp(t) is proportional toC(t). Without loss of gener-

, , . _ality the proportionality constant can be fixed to unity. Fol-
FIG. 2. Schematic representation of the dynamical etchingqying 8], we assume that etchant particles diffuse infinitely

model in “cylindrical” geometry before and after the first time ¢ i the solution(at least much faster than the character-

step._ At thls_ first time step théactive sites in contagt with the istic time scale of etchingand, hencep(t) is taken as spa-

solution arei=1,2,3,4,5, but only 2,3,5 have a resistance Iowertially homogeneous, i.e., the 'etching power does not depend

than the etching powgr(0) and thus are corroded. At the next time on the spatial positi,or; |n the solution

step new sites come in contact with the solutidre whole second At h di te ti t Il solid sites located at th
row if the solution etches in the diagonal direction alsthe etch- each discrete ime step all solid sites located at the

ing power diminishes because of the consumption of etchant paS0lid surface and satisfying<p(t) are dissolvedsee Fig.

ticles. Consequently sites 1 and 4 stay uncorroded forever. 2), i.e., they are removed from the solid, and a particle of
etchant is consumed for each dissolved site, reducing in this

mining the value ofs, is the parameter that controls the Manner the total etching power. o

finite size effects; the “thermodynamic limit” corresponds ~ Denoting byn(t) the number of dissolved solid sitesr

to h—o andL —c with both limits taken in the proper way equivalently the number oft consumed etchant partjcs

[9]. One can also estimate the variation pfrom on the time stept, and by N(t)=2,_,n(t") the total number of

leftmost to the rightmost extremes of the wandering inter-etched solid sites up to timig one can write

face,Ap: - "
Ap~Vp~ . 3) p(t+1)=p(t)— —~=p0)~ —,~ (5)

The identityAp= oV p=oa/h imposes the following scaling As p(t+1)=<p(t), a site having endured the etching attack
relation among exponentg,=1-«a,, and therefore at timet will also resist at any time¢’ >t [11]. Furthermore,
as a consequence of the corrosion process at tjme(t)
new solid sites, previously in the solid bulk, come into con-
D (4) tact with the solution at time+ 1. Note that they are the sole

Let us observe that gradient percolation can also be dekandidates for corrosion at the next time step. Finally, since
fined in a circular geometry, in which the gradient changeéhe solution h_as the pos_5|b|I|ty to detach finite solid islands,
with the radial distance to the origin, and the cutoff is deter-the global solid surface is composed both by the surfaces of
mined by the width of the roughly circular crown in which theé detached islands, and by the set of solid sites separating
the interface is inscribed. the solution from the bulk. This interface is called tar-

Summarizing, in this section, we have reviewed two well-"0sion front A more detailed description of the model phe-
known percolation models. Dynamical percolation is ahomenology can be found [9]. Here we simply summarize
model that, at its critical point, dynamically generates a perfhe main features of the corrosion front at the arrest time
colation cluster. On the other hand, gradient percolation is ey are well represented by GP withp~L/V: (i) the
static model, in which an interface appears with the samé&orrosion front shows fractal features with=1.75 up to a
hull fractal dimension as the percolation cluster, but with nocharacteristic scaléfront thickness o (i) o~ (L/V)~*Pr;
intrinsic dynamics defined. (iit) pc—=p(ty)~(L/V)~ %, with a,=(D;=1)/D; [and
therefore in the right thermodynamic limt(t;) — pc].

Let us introduce here a slight geometrical modification of
the DEM that makes clearer the connection to dynamical

Having introduced the previous two percolation models,percolation. Instead of considering a cylindrical geometry
we go ahead by reviewing the dynamical etching modeblith the etchant solution invading the cylinder from the bot-
(DEM) at the focus of our stud{8,9]. It is defined by the tom (as in Fig. 2, we consider a flat infinite lattice, in which
following ingredients(see Fig. 2 the volumeV of the etching solution is poured at time 0 at

(i) The random solid is mimicked by a two-dimensional an arbitrarily chosen central site as schematically shown in
square lattice of finite linear width and depthY (Y can be Fig. 3. The volumeV of the etching solution is constant.
arbitrarily large, or even infinije Periodic boundary condi- Observe that with this geometry the model has some clear
tions in the finite direction are imposed, leading to a cylin-analogies with dynamical percolation. The main difference is
drical geometry. that, in the spherical DEM, the control paramefite cor-

Di-1

ap—

IIl. DYNAMICAL ETCHING MODEL
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] p at which different sites have been corroded in the radial
direction is proportional td?/V. Finally, asR(t.) <V, the
gradientVp at t. is proportional to 1{V. In this way, in
analogy with the cylindrical case, we expect that the geo-
M solution metrical properties of the final corrosion front are well rep-
v resented by GP where the gradientpois dynamically gen-
erated. Replacingvp with 1/\V, the scaling relations
studied for gradient percolation can be extended to the
present case. The previous description is valid only for the
smooth regime, i.e., up to the time at whigft) ~p.. How-
ever, since the critical regime is shorter than the smooth one,
we havet;~R(t;) ~V, whereR(t;) is the average radius of
the final corrosion front, and the previous estimations remain
valid. In order to check that in the critical regime the radial
gradient of the solution etching power is also givenRiy/,

FIG. 3. Pictorial representation of the dynamical etching modelit is sufficient to assume that during this regime the corrosion
in “spherical” geometry. front changes from a quite smooth geometry to a rougher

one, with a final thickness. Because of the much shorter

roding or infecting probability is not a constant but de- duration of the critical regime one has<R(t;). In this way,
creases in time as the etching process proceeds. As in cyligluring the critical regime the solution etches a number of
drical geometry, the dynamics can be roughly divided intosolid sites proportional tarR(t;). Therefore, from Eq(5),
two regimeg9]: asmoothone wherp(t) is much larger than the variation of the etching power in this regime on average
p., and acritical one whenp(t) approacheg.. In the is Ap~oR(tf)/V.
smooth regime, fluctuations around the average behavior are In conclusion, we have defined a spherical version of the
small while in the critical regime fluctuations dominate the DEM, and seen its connection with gradient percolation:
dynamics[8]. Indeed, at early time steps, the etching powergiven the time diminution op, the system generates dynami-
being sufficiently larger thap,, it is simple to show9] that  cally a spatial gradient of the values pfat which the dif-
the corrosion front is an approximate expanding circumferferent sites were etched. Let us finally emphasize that if, after
ence centered at the origin, and the number of new solid sitefhie process is arrested, more etchant solution is added then
coming into contact with the solution at tintesatisfies the the process continues until it is stopped again at a valye of
approximate relationm(t)=2mR(t), where R(t) is the aroundp.. In this way the disordered solid plays the role of
maximal radius reached by the corrosion up to timés the  a chemical buffer. In the next section we present a more
etchant power is reduced, the corrosion front becometheoretical treatment allowing us to draw even more precise
rougher and rougher, until the dynamics is finally arrestecconnections between the DEM and percolation theory.
(see Fig. 3.

Since in the smooth regime(t)>1, we can writen(t) IV. PHENOMENOLOGICAL FIELD THEORY
=p(t)m(t). Hence, within this approximation, it is possible
to write down the following equation: In order to construct a field theoretical description for the
dynamical etching model, a possibility would be to write
27R(t)p(t) down the master equation defining the dynamics and then
p(t+1)=p(t)— v (6) (using a Poissonian transformatifi23,24] or alternatively a

Fock-space formalismi25]), derive a generating functional
Since in this regime obviousIR(t)et, we can write Eq(6) ~ [18]. Instead of following that strategy, we prefer here to
in a differential form as present a phenomenological set of stochastic Langevin equa-
tions describing the model at a mesoscopic scale. This direct
dp(t) 27t approach, following Landau, based on analysis of the main
T vp(t), (1) symmetries and conservation laws of the discrete model, has
proved very efficient in describing many other systems re-
whose solution is lated to percolation, directed percolation, and, in general,
systems with absorbing statgk3,16].
p(t)=p(0)exp — wt?/V). (8) Let us consider the following three different local densi-
ties or coarse-grained fields.

From this, the characteristic time of the dynamics is seen (1) s(x,t) describes the local density of material suscep-
to be proportional ta/V; i.e., the etching power of the solu- tible to etching at any time after In the discrete model there
tion reaches the valup, in a timet, proportional to+/V. are two types of site contributing to this density) bulk
Moreover, asR(t)«t, at the crossover between the smoothsolid sites andii) “fresh” interface sites, i.e., solid sites,
and the critical regime$i.e., whenp(t)=p.] the solution freshly arrived at the solid-liquid interfacesusceptible to
reaches a distand®,= \V from the origin. By differentiat- etching at the next time stgp
ing this expression we conclude that the gradient of values of (2) q(x,t) is the local density of passivated and inert ma-
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terial. In the microscopic model this is the density of inter- Substituting this result into Eq10), and reintroducing the
face sites having already resisted an etching trial, i.e., imspatial dependence of the fields, it is a matter of simple al-
mune or not susceptible to corrosion at any future time stepgebra to obtain

(3) c(x,t) is the local density of sites corroded and re-
placed by solution, i.e., the local density of etchant. dp (X, ) =[p(t)s(x,0) — c(x,0) ] p(x,t)

The mean field equationgate equationsdescribing the

. . t
a(@al\rlglutlon of the averaged mean values of these magnitudes — p(x,1) fodt’[l—p(t’)]p(x,t’) . 13
s(t)=—ac(t)s(t), In order to go beyond this mean field description, it is nec-
. essary to include properly the spatial coupling and fluctua-
g(t)=a[1—p(t)]c(t)s(t), tions (as a noisp
Spatial couplingIn principle, the spatial coupling can be
c(t)=ap(t)c(t)s(t), (9)  taken into account by introducing additional terms into Eq.

(13). However, because of the isotropic nature of the local

wherep(t) is the probability of etching an active site at time dynamics, terms not invariant under space invergamodd
t, anda is a positive constant. In what follows, and without derivatives of the fieldsare not allowed. Also, terms like
loss of generality, we fixx=1. The interpretation of the first |V p(x,t)|" cannot appear, given the absence of surface ten-
equation is that, in order for the density of susceptible sitesion in the microscopic rulggt]. Therefore, only terms such
to change(decreasgin a region, it is necessary to have lo- as V?"p(x,t) and higher powers of them are allowed. We
cally both a nonvanishing density of etchants and raw solidntroduce in Eq(13) the only relevant term in the renormal-
material susceptible to etching. This restricts the dynamics t@zation group optics[18], namely, a diffusive coupling
active regions, i.e., zones in the interface separating the etcf-?p(x,t), which typically appears in continuous descriptions
able solid and the solution in which nonvanishing local den-of interacting particle systems. It will be checkadposte-
sities of s and of ¢ coexist. Moreover, the second and theriori that, as a matter of fact, the omitted terms are irrelevant
third relations in Eq(9) express the fact that an active site at criticality.
becomes either a site, with probabilityp(t) (the corrosion Noise In order to introduce the noise term properly, let us
power at timet), or alternatively, after healing, @site with  consider a small region in which there défresh” surface
complementary probability % p(t). Note that, as+c+q sites in contact with the solution_of etching powpgrSince
=0, the total number of sites is conserved during the dynamthese fresh sites have random independent resistances, the
ics. It is worth stressing that E49) captures the fact that average number of dissolved sites will pek and the fluc-
sites resisting an etching attempt remain uncorroded indeffuation from this average number will be Poissonian, i.e., of
nitely (as occurs in the microscopic mogeh fact, the num- ~ order \/ﬂ This implies that in the continuous description
ber of q sites grows monotonically until the etching processfluctuations ofp(x,t) are proportional to its square root.
is arrested. Consequently, a termp(x,t) (x,t) has to be added to Eq.

Observe that we have so far written mean field equation$13), with 7(x,t) being a Gaussian white noise with zero
in which spatial dependence and fluctuations are not takemean and no spatiotemporal correlatioig(x,t) »(x’,t"))
into consideration. At this point, it is convenient to introduce = §(x—x") §(t—t"). Deviations from Gaussianity and higher
an activity fieldp(x,t)=c(x,t)s(x,t) [or p(t)=c(t)s(t) as order corrections can be easily argued to be irrelevant in

long as spatial dependences are omitted renormalization group optics, and therefore are not taken into
From Eq.(9) it follows immediately that account. This type of noise, with amplitude proportional to

_ the square root of the activity field, is characteristic of sys-
p(t)y=—c(t)p(t)+p(t)s(t)p(t). (10 tems exhibiting a transition from an active to an absorbing

phase[24]: let us emphasize that wherever the activity field
In order to implement in our theoretical description theis zero the dynamics is stopp€i5,16.

diminution of the etching power as the corrosion process |ntroducing these two new ingredients in Ed.3) one

proceeds, we writg@(t) [analogously to Eq(4)] as obtains finally

P(U=Po- 1 7p(xH)=[P(1)S(x,0 = c(x,0)]p(x,)

t

where nowN(t) = fdx[c(x,t)—c(x,0)] is the number of —p(x0) Jodt’[l—p(t’)]p(x,t’)
consumed etchant particles up to titand, as beforey is
the solution volume. Integrating in time the equationdan +V2p(x,t) + Vp(X,t) p(X,1) (14
Eq. (9), then integrating in space, and substituting the result
into Eq. (11), we obtain up to higher order, irrelevant, terms.

It is worth stressing that, even though the microscopic

p(t)=p(0)expg — iftdt’f dx’ p(x’ t')|. (12) model originally has quenched disorder, it has been possible
Vo ' to describe it in terms of a stochastic equation with annealed
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noise. This simplification is owing to the fact that every site percolation—field theory critical point, but it does not add
is tested for corrosion at most once. If it survives, it will stay any new relevant operator that could eventually change the
uncorroded indefinitely, as previously explained. In this way,universality class. At this point, it is a matter of simple alge-
as every random number is used at most once, it need not tiga to verify that all the terms omitted in our derivation are
stored, there are no time correlations in the noise, and, corndeed irrelevant at the dynamical percolation, &g, renor-
sequently, a stochastic process with no quenched disord&t@lization group fixed point.

can be used for the discrete model. Given the previous discussion, one can say that Ed3.

It is also important to underline that whereysix,t) van- ~ a@nd (14) define a self-organized dynamical percolation
ishes, all activity, including fluctuations, ceases in Egf).  Langevin equationwithout tuning any parameter the dynam-
In other wordsp(x,t) =0 defines an absorbing stdts,15.  ics is arrested in the neighborhood of the percolation critical
This is just another way of saying that in the microscopicPOint, and critical(fracta) properties can be measured up to
model, whenever there is no contact between the etchabf certain length scale determined solely by the paraméter
solid and the solution, i.e., when they are separated by akyvhich controls the rate of decreasepift)]. In the limit v
interface of passivatedmmung solid sites, the dynamics is —* the upper cutoff goes to infinity; i.e., for sufficiently
arrested. Continuous descriptions of systems with absorbingrge values o¥ the point at which the dynamics is stopped
states are based on equations for the activity. In the neigHRccurs at values ob arbitrarily close to its critical value in
borhood of any absorbing state phase transition the activity i§9- (D).
small, and series expansions of the activity density such as Observe that the microscopic process is also self-
the ones we have used to arrive at Eti)] are justified —Organized: initiallyp(t) is taken to be supercritical, but it
[15,16]. decreases monotonically until it reaches a critical value, and

Observe that, apart from the time dependence(tf, Eq. &S soon as the subcritical regime is reached the process is
(14) is identical to the Langevin equation describing dynami-Stopped in an exponential way. Therefore, our continuous
cal percolation[see Eq.(1)] [12,13. As described above, desc_ription reproduces the essential features of the micro-
dynamical percolation is a rather well-known dynamical pro-SCopic model.
cess generating percolation clusters with a characteristic size The long range correlatiorigenerating fractal behavior
determined by [see Eq(1)]. Let us analyze the differences In the dynamical etching process are generated in the regime
between Eq(14) and Eq.(1). Particular attention must be in which the linear coefficient takes values around its critical
paid to the exponential factor in the expressiongét) [see vallue. As a consequence, |t.|s mfgrred that the fractal prop-
Eq. (12)], absent in dynamical percolation; because of iterties of the final frozen configuration are related to the stan-
some of the coefficients in Eq14) are time dependent, dard dynamical percolation renormalization group fixed
while their counterparts in Eq) are constants. First we POINtIn any dimension. _
discuss whether this extra time dependence may affect the UP t0 higher order termsq(x,t) can be written as
critical properties. Note thai(t) does not fluctuatéas veri- ~ d(X.t)=fdt’p(x,t). This variable, the integral over the past
fied in simulations if9]) because it is a smooth function of history of the activity field, represents the statistics of immu-
the integral of the field over all the past time and the wholehized sites as described by JansgEs], and therefore in our
space. Therefore, it is a deterministically decreasing timeProblem the statistics of “surviving” solid clusters [8,9] is
dependent term; or in other words it depends on spatiotenlS0 related to percolation properties. Observe that regions of
poral integrals of the activity field and not on the local ac_the'cluster of corroded sites far frqm the final blocking cor-
tivity field itself. Hence, this term has no critical fluctuations, rosion front have been corroded with a valugodarger than
and does not affect the system critical properties. However, #S critical va_lue and th_erefore are not critical. For the same
is crucial in order to characterize the temporal crossovef€ason the final corrosion front can be seen as the external
from the active to the absorbing phase. Indeed, as the lined€rimeter of an invading percolation clusténe etchant so-
term coefficient in Eq(14) includes a dependence qift), IL!tlon) \_Nlth p=p.. This explams.the. value of t_he fractal
for early times it is positive, corresponding to the fact thatdimensionD=1.75 found for this final corrosion front,
for early times the system is in the supercritical regime. Aswhich is nothing but the hull exponent of percolation in the
the etching mechanism proceeds, the argument of the expéattice geometry under consideratif® 22].
nential in Eq.(12) grows in modulus, and there is a finite ~ Finally, we can perform a finite size scaling analysis of
time t, at which the linear term coefficient takes its critical Our €quation in order to determine how different magnitudes
value. Immediately after, the process becomes subcriticaicale as a function of the only free paramétein particular, -
[26], i.e., it reaches the absorbing phase and the dynamic¥€ can evaluate the distance from the critical point at which
tends to be stopped with an exponentially fast (@&, the the process will finally be stopped. The linear coefficient in
number of active sites decreases exponenjialfurther- EQ.(14) is
more, as more and more sites are etched, the linear coeffi- L
cient in Eq.(14) becomes smaller and smaller than its critical v, L
value, and the exponential stopping rate is accelerated until a ,u(x,t)zs(x,O)p(O)ex;{ - Vfodt f dx’p(x’,t )}
final timet;, at which an absorbinghlocking configuration
is reached. Therefore, the main effect of the time-dependent —c(x,0). (15
linear term coefficient is that, by continuously diminishing, it
drives the system to the neighborhood of the dynamicaFor the points where the dynamics is arrestedt;atit is
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clear thats(x,0)=1 andc(x,0)=0; i.e., att=0 they belong to that of dynamical percolation. This Langevin equation in-
to the solid bulk. Hence, for the bulk we have(t) cludes a linear term coefficient that decreases monotonically
=p(0)exd —(AN)[idt’ fdx' p(x',t’)] independent ok. As ~ aS th_e_ etching process goes on. In this way as soon as it takes
usualt, is the time at which the process is critical(t) IS critical value and enters the “absorbing™ regime the etch-

= ue, andt; the time at which the process is actually ar-Ng process is stopped. Consequently, the fragaale in-
rested. For large values bfthe argument of the exponential Variany properties of the interface in the etching process are

in Eq. (15) can be expanded in power series, and we have, u'Bhown to be related to thelynamical percolatior) renormal-
to the leading order, ization group fixed point. This result is valid in any space

dimension. In particular, our analysis permits us to conclude

14 that the etching upper critical dimensionds= 6, as in(dy-
p(te) = pu(ty) vjt dt’f dx’p(x",t'). (16 namica) percolation. On the other hand, we have also evalu-
¢ ated the role of finite size corrections, which are essentially

Now we can use the scaling analysis presented in the firglifferent from those of standard dynamical percolation.
part of the paper. In the time interval betwegrandt; the An interesting aspect from a theoretical perspective is that

solution erodes a region of the solid with, roughly speakingthe field theoryLangevin equationdescribing the process is

the shape of a circular hole limited by a crown of radiys ~ Self-organized, in the sense that, without any parameter fine
and widtho. As argued befor®.= V. Moreover, since the tuning, fractal, scale-invariant properties are generated.

TRS FY P!+ (i .1 However, it is only in the limitV—e« (1N —0), that the
tity [, fdt t th t of t I . . NI
quant yftcd Jax'p(x',t") gives the amount of materia upper cutoff for scaling diverges. This is in clear analogy

tested E’y the etching solution betwegnandty, we can  \jth what occurs in other models of self-organization, such
write ftidt’de'p(X’,t’)~Rc0- Therefore wu(t)—u(ty)  as sandpile§27], for which critical behavior is observed in

o/ V. Writing o (1/\V) "= one obtains the limit of dissipation.and drivin.g goi'ng to zefas]. '
The mechanism discussed in this paper constitutes a
w(te) —M(tf)oc(\/V)“zr_l_ (17 “path” to self-organized criticality{ 10] in which the control

parameter decreases monotonically until it reaches the neigh-

The fact thatV is finite then implies thatr is finite and  borhood of the absorbing state phase transition where the
m(te) — u(ty) #0. Itis only in the largeV limit that the pro-  dynamics is arrested in an exponential way. This same
cess is stopped exactly at the dynamical percolation criticalnechanism will be investigated in the context of different
point. As discussed in Sec. Ill, one hag=1/D; [9,22], and  types of absorbing state phase transitisach as directed
therefore the distance from the final mass to the critical on@ercolation[15,16)) in future work. Observe that this sce-
scales ad\p, that is, as the excursion of the occupancy prob-nario has the great advantage of being related in a clear-cut
abilities along the separation interface of GP. Therefore weavay to real physical systems, therefore making the observa-
have not only determined the universality class, but also egion of self-organized criticality much more accessible to ex-
tablished how finite size effects operate in the DEM. periments.

In conclusion, all the criticalfracta) properties of the
microscopic model can be shown to be relateddgnami- ACKNOWLEDGMENTS
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