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Field theory of self-organized fractal etching
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We propose a phenomenological field theoretical approach to the chemical etching of a disordered solid. The
theory is based on a recently proposed dynamical etching model. Through the introduction of a set of Langevin
equations for the model evolution, we are able to map the problem into a field theory related to isotropic
percolation. To the best of the author’s knowledge, this constitutes the first application of field theory to a
problem of chemical dynamics. By using this mapping, many of the etching process critical properties are seen
to be describable in terms of the percolation renormalization group fixed point. The emerging field theory has
the peculiarity of beingself-organizedin the sense that without any parameter fine tuning the system develops
fractal properties up to a certain scale controlled solely by the volumeV of the etching solution. In the limit
V→` the upper cutoff goes to infinity and the system becomes scale invariant. We present also a finite size
scaling analysis and discuss the relation of this particular etching mechanism to gradient percolation. Finally,
the possibility of considering this mechanism as a generic path to self-organized criticality is analyzed, with the
characteristics of being closely related to a real physical system and therefore more directly accessible to
experiments.
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I. INTRODUCTION

Corrosion of solids is an everyday phenomenon of evid
practical importance@1#. The recent development of theore
ical tools for the study of disordered systems and fractal
the context of statistical mechanics@2–5# has triggered an
outburst of activity in this subject.

When an etching solution is put in contact with a diso
dered etchable solid, the solution corrodes the weak par
the solid surface, while the hard, stronger parts stay un
roded. During this process new regions of the solid, b
hard and weak, are uncovered and come into contact with
etching solution. As corrosion proceeds the etching powe
the solution may diminish: indeed, if the etchant is consum
in the reaction, etching becomes more and more unlik
until, finally, the solution is so impoverished and the so
surface so hardened that the corrosion process is arreste
that moment all solid points in contact with the solution a
too hard to be etched by the weakened etching solution.
of the most interesting aspects of this type of phenomeno
that the final solid-liquid interface has, in general, a frac
geometry, at least up to a certain scale@3–6#. This is pre-
cisely the qualitative phenomenology observed in a nice
periment on pit corrosion of aluminum thin films@7#.

Recently, a simple dynamical model of etching, captur
the aforementioned phenomenology, has been propo
@8,9#. This model has been studied using both computatio
and analytical tools in@9#, and from these studies stron
evidence has been provided that the fractal properties of
solid surface, once the dynamics has stopped, are relate
isotropic percolation. In principle, this is not an obvious r
sult; in fact, at first sight, one could think that the interfa
should be anisotropic as there is a preferential direction
which the solution advances by etching the solid.
1063-651X/2001/64~1!/016108~8!/$20.00 64 0161
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The purpose of this paper is to provide further theoreti
evidence that indeed the critical behavior of the model
namics is related to isotropic percolation. We also extend
previous relation to spatial dimensions larger thand52. To
this end, we shall first review~Sec. II! two known percola-
tion models that will be useful in the forthcoming discussio
~i! dynamical percolation and~ii ! gradient percolation~GP!.

Afterward ~Sec. III!, we will define the dynamical etching
model @8,9# in a circular ~spherical! geometry and derive a
phenomenological field theory for it~Sec. IV!. From the
analysis of this field theory the parallelism with percolati
will be set up in a rather clear way, and this will provid
further theoretical evidence of the connection between e
ing and percolation phenomena.

The approach presented in this paper will allow us
study the system’sself-organizationfrom a field theoretical
point of view, and to verify that, in a certain limit, the syste
is self-driven to the neighborhood of a critical point witho
need of any parameter fine tuning. This path to se
organized criticality@10# will be discussed in the last section

II. TWO PERCOLATION MODELS

In this section we review two different well-known pe
colation models that will be useful in the discussion of t
etching processes under consideration.

A. Dynamical percolation

Dynamical percolation is a model proposed for the stu
of the propagation of epidemics in a population, and/or
the analysis of forest fires. It is defined as follows@12,13#.
Let us consider a regular square lattice; at each site there
variable that can be in one of three possible states~we bor-
©2001 The American Physical Society08-1
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GABRIELLI, MUÑOZ, AND SAPOVAL PHYSICAL REVIEW E64 016108
row the language from epidemiology@14#!: ~i! infected sites,
~ii ! healthy sites susceptible to being infected, and~iii ! im-
mune sites~nonsusceptible to being reinfected!. At time t
50 a localized seed of infected sites is located at the ce
of an otherwise empty~healthy! lattice. The dynamics pro
ceeds in discrete time steps either by parallel or by seque
updating as follows: at each time step every infected site
infect a~healthy! randomly chosen neighbor with probabilit
p or, alternatively, heal and become immune to reinfect
with complementary probability 12p. Any system state with
no infected site is anabsorbing configuration, i.e., a configu-
ration in which the system can get trapped and from whic
cannot escape@15,16#. It is clear that depending on the valu
of p the epidemics generated by the initial infection seed w
either spread in the lattice~for large values ofp) or die out
~for small values ofp). In all cases, the epidemics will leav
behind a cluster of~healed! immune sites, infinite or finite
respectively, for the two aforementioned cases. Separa
the two previous phases, there is a critical value ofp, 0
,pc,1, at which the epidemics propagates margina
leaving behind a fractal cluster of immunized sites. It can
shown using field theoretical tools~see below! that this is a
percolation cluster@12,13#. In this way we have a dynamica
model that at criticality reproduces the~static! properties of
standard percolation. Needless to say, the dynamical pro
ties of the dynamical percolation equation do not corresp
to any known property of static percolation.

The dynamical percolation model can be cast into the
lowing Langevin equation@12,13# ~or equivalently into a
field theory@17,18#!:

] tr~x,t !5mr~x,t !2ar~x,t !E
0

t

dt8r~x,t8!1¹2r~x,t !

1Ar~x,t !h~x,t !, ~1!

wherem ~the ‘‘mass’’ in field theoretical language! and a
.0 are constants,r(x,t) an activity field describing at a
coarse grained level the density of infected sites, andh(x,t)
a Gaussian white noise. Note the multiplicative nature of
noise, because of which the stater(x,t)50 defines an ab-
sorbing state, i.e.,] tr(x,t)50. Note also the presence of
non-Markovian term, which constitutes the key differen
between this equation and the Reggeon field theory, cha
teristic of many other systems with absorbing states. T
non-Markovian term stems from the existence of immuniz
sites, of which the system keeps an indelible mem
@12,13#.

The field theoretical and renormalization group analy
of Eq. ~1! can be found in the literature@13#. The critical
dimension isdc56, and the exponents, calculated in ane
expansion, coincide with the well-known values for perco
tion calculated using other techniques@19#. Apart from the
static exponents, a dynamical exponentz can also be derived
from this analysis of dynamical percolation@13#.

B. Gradient percolation

Gradient percolation@20# is defined in the following way.
Let us consider a bidimensional rectangular lattice of late
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sizesL andh, respectively, as shown in Fig. 1. An occup
tion probability given byp(x)512x/h is assigned to sites
in column x; this defines a transverse constant gradient¹p
51/h for the occupation probability. Then, at each latti
site (x,y) a random numberr (x,y)P@0,1#, extracted from a
homogeneous distribution, and representing the site’s re
tance to occupation, is assigned. All sites withr (x,y)
,p(x) are declared occupied, while the remainder a
empty. In the first column,x50, all sites are occupied, while
there is zero occupancy in the last one,x5h ~see Fig. 1!.
After identifying all sites as occupied or empty, one dete
two connected regions~clusters!: one ~leftmost! with a ma-
jority of occupied sites possibly surrounding ‘‘lakes’’ o
empty sites, and another one~rightmost! a sea of empty sites
possibly surrounding islands of occupied sites. Separa
these two regions there is an interface~the frontier of the
connected cluster of occupied sites; it corresponds to
dark sites in Fig. 1!. The average position of this interfac
can be shown to be at the square lattice site percola
thresholdpc @20,21#. In fact, gradient percolation has bee
used as a computational tool to obtain accurate values
percolation thresholds in different geometries by identifyi
the average position of the interface in sufficiently large l
tices @20#. In the case that we are considering, the frac
dimension of the interface,D f57/4, can be identified as th
hull fractal dimension of the critical percolating cluster in
two-dimensional lattice@21#. There is an upper cutoff up to
which this fractal behavior is observed; it is fixed by th
width s which, in its turn, is determined byh, and therefore
by ¹p. It can be shown using percolation theory that

s;¹p2as ~2!

whereas51/D f @9,20,22#. In order to have a well-defined
percolation system, with negligible finite size effects, t
limit L@s has to be used. In this way, the lengthh, deter-

FIG. 1. Schematic representation of the gradient percola
model. In this case,L58 andh55. Gray~white! rectangles repre-
sent occupied~empty! sites. In darker gray we indicate the surfa
of the connected cluster of occupied sites. This surface has fra
dimensionD f57/4 up to the characteristic thicknesss;¹p21/D f.
8-2
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FIELD THEORY OF SELF-ORGANIZED FRACTAL ETCHING PHYSICAL REVIEW E64 016108
mining the value ofs, is the parameter that controls th
finite size effects; the ‘‘thermodynamic limit’’ correspond
to h→` andL→` with both limits taken in the proper wa
@9#. One can also estimate the variation ofp from on the
leftmost to the rightmost extremes of the wandering int
face,Dp:

Dp;¹p2ap. ~3!

The identityDp5s¹p5s/h imposes the following scaling
relation among exponents:ap512as , and therefore

ap5
D f21

D f
. ~4!

Let us observe that gradient percolation can also be
fined in a circular geometry, in which the gradient chang
with the radial distance to the origin, and the cutoff is det
mined by the width of the roughly circular crown in whic
the interface is inscribed.

Summarizing, in this section, we have reviewed two we
known percolation models. Dynamical percolation is
model that, at its critical point, dynamically generates a p
colation cluster. On the other hand, gradient percolation
static model, in which an interface appears with the sa
hull fractal dimension as the percolation cluster, but with
intrinsic dynamics defined.

III. DYNAMICAL ETCHING MODEL

Having introduced the previous two percolation mode
we go ahead by reviewing the dynamical etching mo
~DEM! at the focus of our study@8,9#. It is defined by the
following ingredients~see Fig. 2!.

~i! The random solid is mimicked by a two-dimension
square lattice of finite linear widthL and depthY (Y can be
arbitrarily large, or even infinite!. Periodic boundary condi
tions in the finite direction are imposed, leading to a cyl
drical geometry.

FIG. 2. Schematic representation of the dynamical etch
model in ‘‘cylindrical’’ geometry before and after the first tim
step. At this first time step the~active! sites in contact with the
solution arei 51,2,3,4,5, but only 2,3,5 have a resistance low
than the etching powerp(0) and thus are corroded. At the next tim
step new sites come in contact with the solution~the whole second
row if the solution etches in the diagonal direction also!. The etch-
ing power diminishes because of the consumption of etchant
ticles. Consequently sites 1 and 4 stay uncorroded forever.
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~ii ! A random quenched numberr iP@0,1# ~extracted from
a uniform distribution!, assigned to each solid sitei, repre-
sents the site resistance to etching.

~iii ! The etching solution occupies a fixed volumeV and is
initially in contact with the solid through the bottom boun
ary, as depicted in Fig. 2, defining a solid-solution interfa
advancing on average in the upward direction.

The solution contains an initial numberNet(0) of dis-
solved etchant molecules. Its concentration at timet is
C(t)5Net(t)/V. It is assumed that the etching power of th
solutionp(t) is proportional toC(t). Without loss of gener-
ality the proportionality constant can be fixed to unity. Fo
lowing @8#, we assume that etchant particles diffuse infinite
fast in the solution~at least much faster than the charact
istic time scale of etching! and, hence,p(t) is taken as spa-
tially homogeneous, i.e., the etching power does not dep
on the spatial position in the solution.

At each discrete time step all solid sites located at
solid surface and satisfyingr i,p(t) are dissolved~see Fig.
2!, i.e., they are removed from the solid, and a particle
etchant is consumed for each dissolved site, reducing in
manner the total etching power.

Denoting byn(t) the number of dissolved solid sites~or
equivalently the number of consumed etchant particles! at
time stept, and byN(t)5( t850

t n(t8) the total number of
etched solid sites up to timet, one can write

p~ t11!5p~ t !2
n~ t !

V
5p~0!2

N~ t !

V
. ~5!

As p(t11)<p(t), a site having endured the etching atta
at time t will also resist at any timet8.t @11#. Furthermore,
as a consequence of the corrosion process at timet, m(t)
new solid sites, previously in the solid bulk, come into co
tact with the solution at timet11. Note that they are the sol
candidates for corrosion at the next time step. Finally, si
the solution has the possibility to detach finite solid islan
the global solid surface is composed both by the surface
the detached islands, and by the set of solid sites separa
the solution from the bulk. This interface is called thecor-
rosion front. A more detailed description of the model ph
nomenology can be found in@9#. Here we simply summarize
the main features of the corrosion front at the arrest timet f .
They are well represented by GP with¹p;L/V: ~i! the
corrosion front shows fractal features withD f.1.75 up to a
characteristic scale~front thickness! s; ~ii ! s;(L/V)21/D f ;
~iii ! pc2p(t f);(L/V)2ap, with ap.(D f21)/D f @and
therefore in the right thermodynamic limitp(t f)→pc#.

Let us introduce here a slight geometrical modification
the DEM that makes clearer the connection to dynam
percolation. Instead of considering a cylindrical geome
with the etchant solution invading the cylinder from the bo
tom ~as in Fig. 2!, we consider a flat infinite lattice, in which
the volumeV of the etching solution is poured at timet50 at
an arbitrarily chosen central site as schematically shown
Fig. 3. The volumeV of the etching solution is constan
Observe that with this geometry the model has some c
analogies with dynamical percolation. The main difference
that, in the spherical DEM, the control parameter~the cor-
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GABRIELLI, MUÑOZ, AND SAPOVAL PHYSICAL REVIEW E64 016108
roding or infecting probability! is not a constant but de
creases in time as the etching process proceeds. As in c
drical geometry, the dynamics can be roughly divided in
two regimes@9#: a smoothone whenp(t) is much larger than
pc , and acritical one whenp(t) approachespc . In the
smooth regime, fluctuations around the average behavio
small while in the critical regime fluctuations dominate t
dynamics@8#. Indeed, at early time steps, the etching pow
being sufficiently larger thanpc , it is simple to show@9# that
the corrosion front is an approximate expanding circumf
ence centered at the origin, and the number of new solid s
coming into contact with the solution at timet satisfies the
approximate relationm(t).2pR(t), where R(t) is the
maximal radius reached by the corrosion up to timet. As the
etchant power is reduced, the corrosion front becom
rougher and rougher, until the dynamics is finally arres
~see Fig. 3!.

Since in the smooth regimem(t)@1, we can writen(t)
.p(t)m(t). Hence, within this approximation, it is possib
to write down the following equation:

p~ t11!.p~ t !2
2pR~ t !p~ t !

V
. ~6!

Since in this regime obviouslyR(t)}t, we can write Eq.~6!
in a differential form as

dp~ t !

dt
.2

2pt

V
p~ t !, ~7!

whose solution is

p~ t !.p~0!exp~2pt2/V!. ~8!

From this, the characteristic time of the dynamics is se
to be proportional toAV; i.e., the etching power of the solu
tion reaches the valuepc in a time tc proportional toAV.
Moreover, asR(t)}t, at the crossover between the smoo
and the critical regimes@i.e., whenp(t).pc# the solution
reaches a distanceRc.AV from the origin. By differentiat-
ing this expression we conclude that the gradient of value

FIG. 3. Pictorial representation of the dynamical etching mo
in ‘‘spherical’’ geometry.
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p at which different sites have been corroded in the rad
direction is proportional toR/V. Finally, asR(tc)}AV, the
gradient¹p at tc is proportional to 1/AV. In this way, in
analogy with the cylindrical case, we expect that the g
metrical properties of the final corrosion front are well re
resented by GP where the gradient ofp is dynamically gen-
erated. Replacing¹p with 1/AV, the scaling relations
studied for gradient percolation can be extended to
present case. The previous description is valid only for
smooth regime, i.e., up to the time at whichp(t)'pc . How-
ever, since the critical regime is shorter than the smooth o
we havet f;R(t f);AV, whereR(t f) is the average radius o
the final corrosion front, and the previous estimations rem
valid. In order to check that in the critical regime the rad
gradient of the solution etching power is also given byR/V,
it is sufficient to assume that during this regime the corros
front changes from a quite smooth geometry to a roug
one, with a final thicknesss. Because of the much shorte
duration of the critical regime one hass!R(t f). In this way,
during the critical regime the solution etches a number
solid sites proportional tosR(t f). Therefore, from Eq.~5!,
the variation of the etching power in this regime on avera
is Dp;sR(t f)/V.

In conclusion, we have defined a spherical version of
DEM, and seen its connection with gradient percolatio
given the time diminution ofp, the system generates dynam
cally a spatial gradient of the values ofp at which the dif-
ferent sites were etched. Let us finally emphasize that if, a
the process is arrested, more etchant solution is added
the process continues until it is stopped again at a valuep
aroundpc . In this way the disordered solid plays the role
a chemical buffer. In the next section we present a m
theoretical treatment allowing us to draw even more prec
connections between the DEM and percolation theory.

IV. PHENOMENOLOGICAL FIELD THEORY

In order to construct a field theoretical description for t
dynamical etching model, a possibility would be to wri
down the master equation defining the dynamics and t
~using a Poissonian transformation@23,24# or alternatively a
Fock-space formalism@25#!, derive a generating functiona
@18#. Instead of following that strategy, we prefer here
present a phenomenological set of stochastic Langevin e
tions describing the model at a mesoscopic scale. This di
approach, following Landau, based on analysis of the m
symmetries and conservation laws of the discrete model,
proved very efficient in describing many other systems
lated to percolation, directed percolation, and, in gene
systems with absorbing states@13,16#.

Let us consider the following three different local den
ties or coarse-grained fields.

~1! s(x,t) describes the local density of material susce
tible to etching at any time aftert. In the discrete model there
are two types of site contributing to this density:~i! bulk
solid sites and~ii ! ‘‘fresh’’ interface sites, i.e., solid sites
freshly arrived at the solid-liquid interface~susceptible to
etching at the next time step!.

~2! q(x,t) is the local density of passivated and inert m

l
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FIELD THEORY OF SELF-ORGANIZED FRACTAL ETCHING PHYSICAL REVIEW E64 016108
terial. In the microscopic model this is the density of inte
face sites having already resisted an etching trial, i.e.,
mune or not susceptible to corrosion at any future time s

~3! c(x,t) is the local density of sites corroded and r
placed by solution, i.e., the local density of etchant.

The mean field equations~rate equations! describing the
evolution of the averaged mean values of these magnitu
are

ṡ~ t !52ac~ t !s~ t !,

q̇~ t !5a@12p~ t !#c~ t !s~ t !,

ċ~ t !5ap~ t !c~ t !s~ t !, ~9!

wherep(t) is the probability of etching an active site at tim
t, anda is a positive constant. In what follows, and witho
loss of generality, we fixa51. The interpretation of the firs
equation is that, in order for the density of susceptible s
to change~decrease! in a region, it is necessary to have lo
cally both a nonvanishing density of etchants and raw s
material susceptible to etching. This restricts the dynamic
active regions, i.e., zones in the interface separating the e
able solid and the solution in which nonvanishing local de
sities of s and of c coexist. Moreover, the second and t
third relations in Eq.~9! express the fact that an active si
becomes either ac site, with probabilityp(t) ~the corrosion
power at timet), or alternatively, after healing, aq site with
complementary probability 12p(t). Note that, asṡ1 ċ1q̇
50, the total number of sites is conserved during the dyna
ics. It is worth stressing that Eq.~9! captures the fact tha
sites resisting an etching attempt remain uncorroded ind
nitely ~as occurs in the microscopic model!. In fact, the num-
ber of q sites grows monotonically until the etching proce
is arrested.

Observe that we have so far written mean field equati
in which spatial dependence and fluctuations are not ta
into consideration. At this point, it is convenient to introdu
an activity fieldr(x,t)[c(x,t)s(x,t) @or r(t)[c(t)s(t) as
long as spatial dependences are omitted#.

From Eq.~9! it follows immediately that

ṙ~ t !52c~ t !r~ t !1p~ t !s~ t !r~ t !. ~10!

In order to implement in our theoretical description t
diminution of the etching power as the corrosion proc
proceeds, we writep(t) @analogously to Eq.~4!# as

p~ t !5p02
N~ t !

V
, ~11!

where now N(t)5*dx@c(x,t)2c(x,0)# is the number of
consumed etchant particles up to timet and, as before,V is
the solution volume. Integrating in time the equation forc in
Eq. ~9!, then integrating in space, and substituting the re
into Eq. ~11!, we obtain

p~ t !5p~0!expF2
1

VE0

t

dt8E dx8r~x8,t8!G . ~12!
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Substituting this result into Eq.~10!, and reintroducing the
spatial dependence of the fields, it is a matter of simple
gebra to obtain

] tr~x,t !5@p~ t !s~x,0!2c~x,0!#r~x,t !

2r~x,t !F E
0

t

dt8@12p~ t8!#r~x,t8!G . ~13!

In order to go beyond this mean field description, it is ne
essary to include properly the spatial coupling and fluct
tions ~as a noise!.

Spatial coupling. In principle, the spatial coupling can b
taken into account by introducing additional terms into E
~13!. However, because of the isotropic nature of the lo
dynamics, terms not invariant under space inversion~as odd
derivatives of the fields! are not allowed. Also, terms like
u¹r(x,t)un cannot appear, given the absence of surface
sion in the microscopic rules@4#. Therefore, only terms such
as ¹2nr(x,t) and higher powers of them are allowed. W
introduce in Eq.~13! the only relevant term in the renorma
ization group optics@18#, namely, a diffusive coupling
¹2r(x,t), which typically appears in continuous descriptio
of interacting particle systems. It will be checkeda poste-
riori that, as a matter of fact, the omitted terms are irrelev
at criticality.

Noise. In order to introduce the noise term properly, let
consider a small region in which there arek ‘‘fresh’’ surface
sites in contact with the solution of etching powerp. Since
these fresh sites have random independent resistances
average number of dissolved sites will bep•k and the fluc-
tuation from this average number will be Poissonian, i.e.,
orderAp•k. This implies that in the continuous descriptio
fluctuations ofr(x,t) are proportional to its square roo
Consequently, a termAr(x,t)h(x,t) has to be added to Eq
~13!, with h(x,t) being a Gaussian white noise with ze
mean and no spatiotemporal correlations:^h(x,t)h(x8,t8)&
5d(x2x8)d(t2t8). Deviations from Gaussianity and highe
order corrections can be easily argued to be irrelevan
renormalization group optics, and therefore are not taken
account. This type of noise, with amplitude proportional
the square root of the activity field, is characteristic of sy
tems exhibiting a transition from an active to an absorb
phase@24#: let us emphasize that wherever the activity fie
is zero the dynamics is stopped@15,16#.

Introducing these two new ingredients in Eq.~13! one
obtains finally

] tr~x,t !5@p~ t !s~x,0!2c~x,0!#r~x,t !

2r~x,t !F E
0

t

dt8@12p~ t8!#r~x,t8!G
1¹2r~x,t !1Ar~x,t !h~x,t ! ~14!

up to higher order, irrelevant, terms.
It is worth stressing that, even though the microsco

model originally has quenched disorder, it has been poss
to describe it in terms of a stochastic equation with annea
8-5
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GABRIELLI, MUÑOZ, AND SAPOVAL PHYSICAL REVIEW E64 016108
noise. This simplification is owing to the fact that every s
is tested for corrosion at most once. If it survives, it will st
uncorroded indefinitely, as previously explained. In this w
as every random number is used at most once, it need no
stored, there are no time correlations in the noise, and, c
sequently, a stochastic process with no quenched diso
can be used for the discrete model.

It is also important to underline that whereverr(x,t) van-
ishes, all activity, including fluctuations, ceases in Eq.~14!.
In other words,r(x,t)50 defines an absorbing state@16,15#.
This is just another way of saying that in the microsco
model, whenever there is no contact between the etch
solid and the solution, i.e., when they are separated by
interface of passivated~immune! solid sites, the dynamics i
arrested. Continuous descriptions of systems with absor
states are based on equations for the activity. In the ne
borhood of any absorbing state phase transition the activi
small, and series expansions of the activity density such
the ones we have used to arrive at Eq.~14!# are justified
@15,16#.

Observe that, apart from the time dependence ofp(t), Eq.
~14! is identical to the Langevin equation describing dynam
cal percolation@see Eq.~1!# @12,13#. As described above
dynamical percolation is a rather well-known dynamical p
cess generating percolation clusters with a characteristic
determined bym @see Eq.~1!#. Let us analyze the difference
between Eq.~14! and Eq.~1!. Particular attention must b
paid to the exponential factor in the expression forp(t) @see
Eq. ~12!#, absent in dynamical percolation; because of
some of the coefficients in Eq.~14! are time dependent
while their counterparts in Eq.~1! are constants. First we
discuss whether this extra time dependence may affect
critical properties. Note thatp(t) does not fluctuate~as veri-
fied in simulations in@9#! because it is a smooth function o
the integral of the field over all the past time and the wh
space. Therefore, it is a deterministically decreasing tim
dependent term; or in other words it depends on spatiot
poral integrals of the activity field and not on the local a
tivity field itself. Hence, this term has no critical fluctuation
and does not affect the system critical properties. Howeve
is crucial in order to characterize the temporal crosso
from the active to the absorbing phase. Indeed, as the li
term coefficient in Eq.~14! includes a dependence onp(t),
for early times it is positive, corresponding to the fact th
for early times the system is in the supercritical regime.
the etching mechanism proceeds, the argument of the e
nential in Eq.~12! grows in modulus, and there is a finit
time tc at which the linear term coefficient takes its critic
value. Immediately after, the process becomes subcri
@26#, i.e., it reaches the absorbing phase and the dynam
tends to be stopped with an exponentially fast rate~i.e., the
number of active sites decreases exponentially!. Further-
more, as more and more sites are etched, the linear co
cient in Eq.~14! becomes smaller and smaller than its critic
value, and the exponential stopping rate is accelerated un
final time t f , at which an absorbing~blocking! configuration
is reached. Therefore, the main effect of the time-depend
linear term coefficient is that, by continuously diminishing,
drives the system to the neighborhood of the dynam
01610
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percolation–field theory critical point, but it does not ad
any new relevant operator that could eventually change
universality class. At this point, it is a matter of simple alg
bra to verify that all the terms omitted in our derivation a
indeed irrelevant at the dynamical percolation, Eq.~1!, renor-
malization group fixed point.

Given the previous discussion, one can say that Eqs.~12!
and ~14! define a self-organized dynamical percolatio
Langevin equation: without tuning any parameter the dynam
ics is arrested in the neighborhood of the percolation criti
point, and critical~fractal! properties can be measured up
a certain length scale determined solely by the parameteV
@which controls the rate of decrease ofp(t)#. In the limit V
→` the upper cutoff goes to infinity; i.e., for sufficientl
large values ofV the point at which the dynamics is stoppe
occurs at values ofp arbitrarily close to its critical value in
Eq. ~1!.

Observe that the microscopic process is also s
organized: initiallyp(t) is taken to be supercritical, but i
decreases monotonically until it reaches a critical value,
as soon as the subcritical regime is reached the proce
stopped in an exponential way. Therefore, our continu
description reproduces the essential features of the mi
scopic model.

The long range correlations~generating fractal behavior!
in the dynamical etching process are generated in the reg
in which the linear coefficient takes values around its criti
value. As a consequence, it is inferred that the fractal pr
erties of the final frozen configuration are related to the st
dard dynamical percolation renormalization group fix
point in any dimension.

Up to higher order terms,q(x,t) can be written as
q(x,t)}*dt8r(x,t). This variable, the integral over the pa
history of the activity field, represents the statistics of imm
nized sites as described by Janssen@13#, and therefore in our
problem the statistics of ‘‘surviving’’ solid clusters in@8,9# is
also related to percolation properties. Observe that region
the cluster of corroded sites far from the final blocking co
rosion front have been corroded with a value ofp larger than
its critical value and therefore are not critical. For the sa
reason the final corrosion front can be seen as the exte
perimeter of an invading percolation cluster~the etchant so-
lution! with p.pc . This explains the value of the fracta
dimension D f.1.75 found for this final corrosion front
which is nothing but the hull exponent of percolation in t
lattice geometry under consideration@9,22#.

Finally, we can perform a finite size scaling analysis
our equation in order to determine how different magnitud
scale as a function of the only free parameterV; in particular,
we can evaluate the distance from the critical point at wh
the process will finally be stopped. The linear coefficient
Eq. ~14! is

m~x,t !5s~x,0!p~0!expF2
1

VE0

t

dt8E dx8r~x8,t8!G
2c~x,0!. ~15!

For the points where the dynamics is arrested, att f , it is
8-6
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clear thats(x,0)51 andc(x,0)50; i.e., att50 they belong
to the solid bulk. Hence, for the bulk we havem(t)
5p(0)exp@2(1/V)*0

t dt8*dx8r(x8,t8)# independent ofx. As
usual tc is the time at which the process is critical,m(tc)
5mc , and t f the time at which the process is actually a
rested. For large values ofV the argument of the exponentia
in Eq. ~15! can be expanded in power series, and we have
to the leading order,

m~ tc!2m~ t f !}
1

VEtc

t f
dt8E dx8r~x8,t8!. ~16!

Now we can use the scaling analysis presented in the
part of the paper. In the time interval betweentc and t f the
solution erodes a region of the solid with, roughly speaki
the shape of a circular hole limited by a crown of radiusRc

and widths. As argued beforeRc}AV. Moreover, since the
quantity * tc

t f dt8*dx8r(x8,t8) gives the amount of materia

tested by the etching solution betweentc and t f , we can
write * tc

t f dt8*dx8r(x8,t8);Rcs. Therefore m(tc)2m(t f)

}s/AV. Writing s}(1/AV)2as one obtains

m~ tc!2m~ t f !}~AV!as21. ~17!

The fact thatV is finite then implies thats is finite and
m(tc)2m(t f)Þ0. It is only in the largeV limit that the pro-
cess is stopped exactly at the dynamical percolation crit
point. As discussed in Sec. III, one hasas51/D f @9,22#, and
therefore the distance from the final mass to the critical
scales asDp, that is, as the excursion of the occupancy pro
abilities along the separation interface of GP. Therefore
have not only determined the universality class, but also
tablished how finite size effects operate in the DEM.

In conclusion, all the critical~fractal! properties of the
microscopic model can be shown to be related to~dynami-
cal! percolation in any space dimension, by using the c
tinuous ~field theoretical! representation presented abov
and finite size corrections can be evaluated.

V. CONCLUSIONS

Summing up, we have found that the dynamical etch
model proposed by Sapovalet al. @8# is a self-organized pro
cess describable by a continuous Langevin equation sim
c

-

01610
p

st

,

al

e
-
e
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to that of dynamical percolation. This Langevin equation
cludes a linear term coefficient that decreases monotonic
as the etching process goes on. In this way as soon as it t
its critical value and enters the ‘‘absorbing’’ regime the etc
ing process is stopped. Consequently, the fractal~scale in-
variant! properties of the interface in the etching process
shown to be related to the~dynamical! percolation renormal-
ization group fixed point. This result is valid in any spa
dimension. In particular, our analysis permits us to conclu
that the etching upper critical dimension isdc56, as in~dy-
namical! percolation. On the other hand, we have also eva
ated the role of finite size corrections, which are essenti
different from those of standard dynamical percolation.

An interesting aspect from a theoretical perspective is t
the field theory~Langevin equation! describing the process i
self-organized, in the sense that, without any parameter
tuning, fractal, scale-invariant properties are genera
However, it is only in the limitV→` (1/V→0), that the
upper cutoff for scaling diverges. This is in clear analo
with what occurs in other models of self-organization, su
as sandpiles@27#, for which critical behavior is observed in
the limit of dissipation and driving going to zero@28#.

The mechanism discussed in this paper constitute
‘‘path’’ to self-organized criticality@10# in which the control
parameter decreases monotonically until it reaches the ne
borhood of the absorbing state phase transition where
dynamics is arrested in an exponential way. This sa
mechanism will be investigated in the context of differe
types of absorbing state phase transition~such as directed
percolation@15,16#! in future work. Observe that this sce
nario has the great advantage of being related in a clear
way to real physical systems, therefore making the obse
tion of self-organized criticality much more accessible to e
periments.
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